PyHopper - A Plug-and-Play Hyperparameter Optimization EngineDownload PDF

04 Oct 2022, 08:28 (modified: 28 Oct 2022, 21:20)HITY Workshop NeurIPS 2022Readers: Everyone
Keywords: Hyperparameter optimization
TL;DR: PyHopper - An Open-Source Plug-and-Play Python Hyperparameter Optimization Engine
Abstract: Hyperparameter tuning is a fundamental aspect of machine learning research. Setting up the infrastructure for systematic optimization of hyperparameters can take a significant amount of time. Here, we present PyHopper, an open-source black-box optimization platform designed to streamline the hyperparameter tuning workflow of machine learning research. PyHopper's goal is to integrate with existing code with minimal effort and run the optimization process with minimal necessary manual oversight. With simplicity as the primary theme, PyHopper is powered by a single robust Markov-chain Monte-Carlo optimization algorithm that scales to millions of dimensions. Compared to existing tuning packages, focusing on a single algorithm frees the user from having to decide between several algorithms and makes PyHopper easily customizable. PyHopper is publicly available under the Apache-2.0 license at https://github.com/PyHopper/PyHopper
Supplementary Material: zip
3 Replies

Loading