The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in TransformersDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Transformers, Sparse, Calibration, Robustness, Label Noise, Efficiency
TL;DR: Learned Transformers for NLP (e.g., T5) and Vision (e.g., ViT) tasks produce sparse representations in their MLP layers. The sparsity may be leveraged to improve robustness, calibration, and computational efficiency of Transformer models.
Abstract: This paper studies a curious phenomenon that machine learning model with Transformer architectures have sparse activation maps. By activation map we refer to the intermediate output of the multi-layer perceptrons (MLPs) after a ReLU activation function, and by "sparse" we mean that on average very few entries (e.g., 3.0% for T5-Base and 6.3% for ViT-B16) are nonzero for each input to MLP. Moreover, larger Transformers with more layers and wider MLP hidden dimensions are sparser as measured by the percentage of nonzero entries. Through extensive experiments we demonstrate that the emergence of sparsity is a prevalent phenomenon that occurs for both natural language processing and vision tasks, on both training and evaluation data, for Transformers of various configurations, at layers of all depth levels. We discuss how sparsity immediately implies a way to significantly reduce the FLOP count and improve efficiency for Transformers. Moreover, we demonstrate perhaps surprisingly that enforcing an even sparser activation via Top-k thresholding with a small k brings a collection of desired properties, namely less sensitivity to noisy training data, more robustness to input corruptions, and better calibration for their prediction confidence.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
16 Replies