Keywords: Diffuison, Text-to-image,Data augmentation
TL;DR: Data Extrapolation for Text-to-image Generation on Small Datasets
Abstract: Text-to-image generation requires large amount of training data to synthesizing high-quality images. For augmenting training data, previous methods rely on data interpolations like cropping, flipping, and mixing up, which fail to introduce new information and yield only marginal improvements. In this paper, we propose a new data augmentation method for text-to-image generation using linear extrapolation. Specifically, we apply linear extrapolation only on text feature, and new image data are retrieved from the internet by search engines. For the reliability of new text-image pairs, we design two outlier detectors to purify retrieved images. Based on extrapolation, we construct training samples dozens of times larger than the original dataset, resulting in a significant improvement in text-to-image performance. Moreover, we propose a NULL-guidance to refine score estimation, and apply recurrent affine transformation to fuse text information. Our model achieves FID scores of 7.91, 9.52 and 5.00 on the CUB, Oxford and COCO datasets. The code and data will be available on GitHub.
Supplementary Material: pdf
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1034
Loading