Keywords: EEG decoding, Visual reconstruction, BCI, Visual neural decoding
Abstract: Electroencephalogram (EEG) signals have become a popular medium for decoding visual information due to their cost-effectiveness and high temporal resolution. However, current approaches face significant challenges in bridging the modality gap between EEG and image data. These methods typically rely on complex adaptation processes involving multiple stages, making it hard to maintain consistency and manage compounding errors. Furthermore, the computational overhead imposed by large-scale diffusion models limit their practicality in real-world brain-computer interface (BCI) applications. In this work, we present AVDE, a lightweight and efficient framework for visual decoding from EEG signals. First, we leverage LaBraM, a pre-trained EEG model, and fine-tune it via contrastive learning to align EEG and image representations. Second, we adopt an autoregressive generative framework based on a "next-scale prediction" strategy: images are encoded into multi-scale token maps using a pre-trained VQ-VAE, and a transformer is trained to autoregressively predict finer-scale tokens starting from EEG embeddings as the coarsest representation. This design enables coherent generation while preserving a direct connection between the input EEG signals and the reconstructed images. Experiments on two datasets show that AVDE outperforms previous state-of-the-art methods in both image retrieval and reconstruction tasks, while using only 10% of the parameters. In addition, visualization of intermediate outputs shows that the generative process of AVDE reflects the hierarchical nature of human visual perception. These results highlight the potential of autoregressive models as efficient and interpretable tools for practical BCI applications. The code is available at https://anonymous.4open.science/r/avde-783D.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 14646
Loading