Offline Decision Transformers for Neural Combinatorial Optimization: Surpassing Heuristics on the Traveling Salesman Problem
Keywords: Neural Combinatorial Optimization, Decision Transformer, Offline reinforcement learning, Traveling Salesman Problem
Abstract: Combinatorial optimization problems like the Traveling Salesman Problem are critical in industry yet NP-hard. Neural Combinatorial Optimization has shown promise, but its reliance on online reinforcement learning (RL) hampers deployment and underutilizes decades of algorithmic knowledge. We address these limitations by applying the offline RL framework, Decision Transformer, to learn superior strategies directly from datasets of heuristic solutions—aiming not only to imitate but to synthesize and outperform them. Concretely, we (i) integrate a Pointer Network to handle the instance-dependent, variable action space of node selection, and (ii) employ expectile regression for optimistic conditioning of Return-to-Go, which is crucial for instances with widely varying optimal values. Experiments show that our method consistently produces higher-quality tours than the four classical heuristics it is trained on, demonstrating the potential of offline RL to unlock and exceed the performance embedded in existing domain knowledge.
Submission Number: 15
Loading