Keywords: Implicit neural representation, Spectral bias, Training dynamics
TL;DR: improving spectral bias in implicit neural representations
Abstract: Implicit Neural Representations (INRs) as a versatile representation paradigm have achieved success in various computer vision tasks. Due to the spectral bias of the vanilla multi-layer perceptrons (MLPs), existing methods focus on designing MLPs with sophisticated architectures or repurposing existing training techniques for highly accurate INRs. In this paper, we delve into the linear dynamics model of MLPs and theoretically identify the empirical Neural Tangent Kernel (eNTK) matrix as a reliable link between spectral bias and training dynamics. Based on eNTK matrix, we propose a practical inductive gradient adjustment method, which could purposefully improve the spectral bias via inductive generalization of eNTK-based gradient transformation matrix. We evaluate our method on different INRs tasks with various INR architectures and compare to existing training techniques. The superiority representation performance clearly validate the advantage of our proposed method. Armed with our gradient adjustment method, better INRs with more enhanced texture details and sharpened edges can be learned from the training data by tailored improvements on spectral bias.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 125
Loading