MLLM Is a Strong Reranker: Advancing Multimodal Retrieval-augmented Generation via Knowledge-enhanced Reranking and Noise-injected Training
Keywords: Multimodal Retrieval-augmented Generation, Multimodal Large Language Model
TL;DR: We propose RagVL, a novel framework that enhances MLLMs with knowledge-enhanced reranking and noise-injected training.
Abstract: Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in processing and generating content across multiple data modalities. However, a significant drawback of MLLMs is their reliance on static training data, leading to outdated information and limited contextual awareness. This static nature hampers their ability to provide accurate and up-to-date responses, particularly in dynamic or rapidly evolving contexts. Though integrating Multimodal Retrieval-augmented Generation (Multimodal RAG) offers a promising solution, the system would inevitably encounter the multi-granularity noisy correspondence (MNC) problem, which hinders accurate retrieval and generation. In this work, we propose RagVL, a novel framework with knowledge-enhanced reranking and noise-injected training, to address these limitations. We instruction-tune the MLLM with a simple yet effective instruction template to induce its ranking ability and serve it as a reranker to precisely filter the top-k retrieved images. For generation, we inject visual noise during training at the data and token levels to enhance the generator's robustness. Extensive experiments on four datasets verify the effectiveness of our method. Code and models are available at https://anonymous.4open.science/r/RagVL-F694.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3410
Loading