On amortizing convex conjugates for optimal transportDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: optimal transport, wasserstein-2, convex conjugate, c-transform, amortized optimization
TL;DR: State-of-the art continuous Wasserstein-2 potential learning, and along the way I improved Jax's L-BFGS implementation to run in 3% of the time for solving batches of optimization problems
Abstract: This paper focuses on computing the convex conjugate operation that arises when solving Euclidean Wasserstein-2 optimal transport problems. This conjugation, which is also referred to as the Legendre-Fenchel conjugate or c-transform,is considered difficult to compute and in practice,Wasserstein-2 methods are limited by not being able to exactly conjugate the dual potentials in continuous space. To overcome this, the computation of the conjugate can be approximated with amortized optimization, which learns a model to predict the conjugate. I show that combining amortized approximations to the conjugate with a solver for fine-tuning significantly improves the quality of transport maps learned for the Wasserstein-2 benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional couplings and flows considered in the literature. All of the baselines, methods, and solvers in this paper are available at http://github.com/facebookresearch/w2ot.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Optimization (eg, convex and non-convex optimization)
Supplementary Material: zip
0 Replies