Solving Video Inverse Problems Using Image Diffusion Models

ICLR 2025 Conference Submission760 Authors

14 Sept 2024 (modified: 20 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image diffusion models, Video inverse problems, Batch-consistent sampling
TL;DR: We propose a video inverse problem solver using an image diffusion model with a batch-consistent sampling strategy.
Abstract: Recently, diffusion model-based inverse problem solvers (DIS) have emerged as state-of-the-art approaches for addressing inverse problems, including image super-resolution, deblurring, inpainting, etc. However, their application to video inverse problems arising from spatio-temporal degradation remains largely unexplored due to the challenges in training video diffusion models. To address this issue, here we introduce an innovative video inverse solver that leverages only image diffusion models. Specifically, by drawing inspiration from the success of the recent decomposed diffusion sampler (DDS), our method treats the time dimension of a video as the batch dimension of image diffusion models and solves spatio-temporal optimization problems within denoised spatio-temporal batches derived from each image diffusion model. Moreover, we introduce a batch-consistent diffusion sampling strategy that encourages consistency across batches by synchronizing the stochastic noise components in image diffusion models. Our approach synergistically combines batch-consistent sampling with simultaneous optimization of denoised spatio-temporal batches at each reverse diffusion step, resulting in a novel and efficient diffusion sampling strategy for video inverse problems. Experimental results demonstrate that our method effectively addresses various spatio-temporal degradations in video inverse problems, achieving state-of-the-art reconstructions. Project page: https://solving-video-inverse.github.io/main
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 760
Loading