Proteina: Scaling Flow-based Protein Structure Generative Models

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: protein structure generation, de novo protein design, flow matching, fold class conditioning
TL;DR: We present a novel flow-based protein backbone generative model that uses a new scalable transformer architecture and conditions on fold class labels.
Abstract: Recently, diffusion- and flow-based generative models of protein structures have emerged as a powerful tool for de novo protein design. Here, we develop Proteina, a new large-scale flow-based protein backbone generator that utilizes hierarchical fold class labels for conditioning and relies on a tailored scalable transformer architecture with up to $5\times$ as many parameters as previous models. To meaningfully quantify performance, we introduce a new set of metrics that directly measure the distributional similarity of generated proteins with reference sets, complementing existing metrics. We further explore scaling training data to millions of synthetic protein structures and explore improved training and sampling recipes adapted to protein backbone generation. This includes fine-tuning strategies like LoRA for protein backbones, new guidance methods like classifier-free guidance and autoguidance for protein backbones, and new adjusted training objectives. Proteina achieves state-of-the-art performance on de novo protein backbone design and produces diverse and designable proteins at unprecedented length, up to 800 residues. The hierarchical conditioning offers novel control, enabling high-level secondary-structure guidance as well as low-level fold-specific generation.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9667
Loading