Consistent Zero-Shot Imitation with Contrastive Goal Inference

ICLR 2026 Conference Submission21072 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: inverse reinforcement learning, contrastive learning, goal-conditioned reinforcement learning
TL;DR: This work presents a framework for achieving consistent zero-shot imitation capabilities by combining goal-conditioned contrastive reinforcement learning with inverse reinforcement learning.
Abstract: In the same way that generative models today conduct most of their training in a self-supervised fashion, how can agentic models conduct their training in a self-supervised fashion, interactively exploring, learning, and preparing to quickly adapt to new tasks? A prerequisite for embodied agents deployed in real world interactions ought to be training with interaction, yet today's most successful AI models (e.g., VLMs, LLMs) are trained without an explicit notion of action. The problem of pure exploration (which assumes no data as input) is well studied in the reinforcement learning literature and provides agents with a wide array of experiences, yet it fails to prepare them for rapid adaptation to new tasks. Today's language and vision models are trained on data provided by humans, which provides a strong inductive bias for the sorts of tasks that the model will have to solve (e.g., modeling chords in a song, phrases in a sonnet, sentences in a medical record). However, when they are prompted to solve a new task, there is a faulty tacit assumption that humans spend most of their time in the most rewarding states. The key contribution of our paper is a method for pre-training interactive agents in a self-supervised fashion, so that they can instantly mimic human demonstrations. Our method treats goals (i.e., observations) as the atomic construct. During training, our method automatically proposes goals and practices reaching them, building off prior work in reinforcement learning exploration. During evaluation, our method solves an (amortized) inverse reinforcement learning problem to explain demonstrations as optimal goal-reaching behavior. Experiments on standard benchmarks (not designed for goal-reaching) show that our approach outperforms prior methods for zero-shot imitation.
Primary Area: reinforcement learning
Submission Number: 21072
Loading