Utilizing Explainable Reinforcement Learning to Improve Reinforcement Learning: A Theoretical and Systematic Framework

ICLR 2025 Conference Submission4812 Authors

25 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: explainable reinforcement learning
Abstract: Reinforcement learning (RL) faces two challenges: (1) The RL agent lacks explainability. (2) The trained RL agent is, in many cases, non-optimal and even far from optimal. To address the first challenge, explainable reinforcement learning (XRL) is proposed to explain the decision-making of the RL agent. In this paper, we demonstrate that XRL can also be used to address the second challenge, i.e., improve RL performance. Our method has two parts. The first part provides a two-level explanation for why the RL agent is not optimal by identifying the mistakes made by the RL agent. Since this explanation includes the mistakes of the RL agent, it has the potential to help correct the mistakes and thus improve RL performance. The second part formulates a constrained bi-level optimization problem to learn how to best utilize the two-level explanation to improve RL performance. In specific, the upper level learns how to use the high-level explanation to shape the reward so that the corresponding policy can maximize the cumulative ground truth reward, and the lower level learns the corresponding policy by solving a constrained RL problem formulated using the low-level explanation. We propose a novel algorithm to solve this constrained bi-level optimization problem, and theoretically guarantee that the algorithm attains global optimality. We use MuJoCo experiments to show that our method outperforms state-of-the-art baselines.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4812
Loading