PUATE: Efficient ATE Estimation from Treated (Positive) and Unlabeled Units

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC-ND 4.0
Keywords: Causal inference, PU learning, average treatment effect estimation
Abstract: The estimation of average treatment effects (ATEs), defined as the difference in expected outcomes between treatment and control groups, is a central topic in causal inference. This study develops semiparametric efficient estimators for ATE in a setting where only a treatment group and an unlabeled group—consisting of units whose treatment status is unknown—are observed. This scenario constitutes a variant of learning from positive and unlabeled data (PU learning) and can be viewed as a special case of ATE estimation with missing data. For this setting, we derive the semiparametric efficiency bounds, which characterize the lowest achievable asymptotic variance for regular estimators. We then construct semiparametric efficient ATE estimators that attain these bounds. Our results contribute to the literature on causal inference with missing data and weakly supervised learning.
Primary Area: Probabilistic methods (e.g., variational inference, causal inference, Gaussian processes)
Submission Number: 15658
Loading