Keywords: fairness, large language models, chatbots
TL;DR: A methodology for evaluating bias in open-ended chat
Abstract: Evaluating chatbot fairness is crucial given their rapid proliferation, yet typical chatbot tasks (e.g., resume writing, entertainment) diverge from the institutional decision-making tasks (e.g., resume screening) which have traditionally been central to discussion of algorithmic fairness. The open-ended nature and diverse use-cases of chatbots necessitate novel methods for bias assessment. This paper addresses these challenges by introducing a scalable counterfactual approach to evaluate "first-person fairness," meaning fairness toward chatbot users based on demographic characteristics. Our method employs a Language Model as a Research Assistant (LMRA) to yield quantitative measures of harmful stereotypes and qualitative analyses of demographic differences in chatbot responses. We apply this approach to assess biases in six of our language models across millions of interactions, covering sixty-six tasks in nine domains and spanning two genders and four races. Independent human annotations corroborate the LMRA-generated bias evaluations. This study represents the first large-scale fairness evaluation based on real-world chat data. We highlight that post-training reinforcement learning techniques significantly mitigate these biases. This evaluation provides a practical methodology for ongoing bias monitoring and mitigation.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8413
Loading