Benchmark Profiling: Mechanistic Diagnosis of LLM Benchmarks

ACL ARR 2025 May Submission5649 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large Language Models are commonly judged by their scores on standard benchmarks, yet such scores often overstate real capability since they mask the mix of skills a task actually demands. For example, ARC is assumed to test reasoning, while HellaSwag is designed to evaluate commonsense. However, we lack a systematic way to verify if these benchmarks actually measure these labels. We introduce **BENCHMARK PROFILING**, a diagnostic framework that decomposes benchmark performance into ten cognitively grounded abilities. The method combines gradient-based importance scoring with targeted parameter ablation to compute an *Ability Impact Score* (AIS) that quantifies how much each ability contributes to a model's success on a given benchmark. Profiling three instruction-tuned models across ten widely used benchmarks yields four key findings: (i) most benchmarks draw on several abilities rather than one, (ii) datasets with similar labels rely on distinct ability mixtures, (iii) code-generation benchmarks reward broad, multi-skill improvement and thus show only modest gains from narrow domain-specific fine-tuning, and (iv) abilities irrelevant to the task could negatively affect performance. **BENCHMARK PROFILING** therefore explains why performance gains do not always translate into user-perceived competence and offer a transparent tool for benchmark audit and model interpretability.
Paper Type: Long
Research Area: Linguistic theories, Cognitive Modeling and Psycholinguistics
Research Area Keywords: cognitive modeling, data influence, benchmarking, automatic evaluation of datasets, evaluation methodologies, transparency
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Data resources, Data analysis
Languages Studied: English
Submission Number: 5649
Loading