Keywords: Transformer, positional encoding, learning to optimize, vehicle routing problem, combinatorial optimization
TL;DR: We present a Dual-Aspect Collaborative Transformer to solve vehicle routing problems, which delivers superior performance.
Abstract: Recently, Transformer has become a prevailing deep architecture for solving vehicle routing problems (VRPs). However, it is less effective in learning improvement models for VRP because its positional encoding (PE) method is not suitable in representing VRP solutions. This paper presents a novel Dual-Aspect Collaborative Transformer (DACT) to learn embeddings for the node and positional features separately, instead of fusing them together as done in existing ones, so as to avoid potential noises and incompatible correlations. Moreover, the positional features are embedded through a novel cyclic positional encoding (CPE) method to allow Transformer to effectively capture the circularity and symmetry of VRP solutions (i.e., cyclic sequences). We train DACT using Proximal Policy Optimization and design a curriculum learning strategy for better sample efficiency. We apply DACT to solve the traveling salesman problem (TSP) and capacitated vehicle routing problem (CVRP). Results show that our DACT outperforms existing Transformer based improvement models, and exhibits much better generalization performance across different problem sizes on synthetic and benchmark instances, respectively.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: https://github.com/yining043/VRP-DACT/
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/learning-to-iteratively-solve-routing/code)
19 Replies
Loading