Real-time design of architectural structures with differentiable mechanics and neural networks

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Differentiable physics, mechanical design, physics-in-the-loop neural networks, inverse problems, architectural structures
TL;DR: We couple neural networks with a differentiable mechanics simulator to accelerate the solution of shape-matching problems for mechanical design.
Abstract: Designing mechanically efficient geometry for architectural structures like shells, towers, and bridges, is an expensive iterative process. Existing techniques for solving such inverse problems rely on traditional optimization methods, which are slow and computationally expensive, limiting iteration speed and design exploration. Neural networks would seem to offer a solution via data-driven amortized optimization, but they often require extensive fine-tuning and cannot ensure that important design criteria, such as mechanical integrity, are met. In this work, we combine neural networks with a differentiable mechanics simulator to develop a model that accelerates the solution of shape approximation problems for architectural structures represented as bar systems. This model explicitly guarantees compliance with mechanical constraints while generating designs that closely match target geometries. We validate our approach in two tasks, the design of masonry shells and cable-net towers. Our model achieves better accuracy and generalization than fully neural alternatives, and comparable accuracy to direct optimization but in real time, enabling fast and reliable design exploration. We further demonstrate its advantages by integrating it into 3D modeling software and fabricating a physical prototype. Our work opens up new opportunities for accelerated mechanical design enhanced by neural networks for the built environment.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11555
Loading