Abstract: Evidence-enhanced detectors present remarkable abilities in identifying malicious social text. However, the rise of large language models (LLMs) brings potential risks of evidence pollution to confuse detectors. This paper explores potential manipulation scenarios including basic pollution, and rephrasing or generating evidence by LLMs. To mitigate the negative impact, we propose three defense strategies from the data and model sides, including machine-generated text detection, a mixture of experts, and parameter updating.
Extensive experiments on four malicious social text detection tasks with ten datasets illustrate that evidence pollution significantly compromises detectors, where the generating strategy causes up to a 14.4% performance drop. Meanwhile, the defense strategies could mitigate evidence pollution, but they faced limitations for practical employment. Further analysis illustrates that polluted evidence (i) is of high quality, evaluated by metrics and humans; (ii) would compromise the model calibration, increasing expected calibration error up to 21.6%; and (iii) could be integrated to amplify the negative impact, especially for encoder-based LMs, where the accuracy drops by 21.8%.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: Malicious Social Text Detection, Misinformation Detection, Large Language Models
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 2724
Loading