Evaluating Synthetic Activations composed of SAE Latents in GPT-2

27 Sept 2024 (modified: 18 Oct 2024)ICLR 2025 Conference Desk Rejected SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Mechanistic Interpretability, SAEs, Activations, SAE Latents
TL;DR: We investigate how synthetic activations composed of SAE latents compare to real model-generated activations in GPT-2, revealing insights into the importance of SAE latents relationships and activation plateau characteristics.
Abstract: Sparse Auto-Encoders (SAEs) are commonly employed in mechanistic interpretability to decompose the residual stream into monosemantic SAE latents. Recent work demonstrates that perturbing a model's activations at an early layer results in a step-function-like change in the model's final layer activations. Furthermore, the model's sensitivity to this perturbation differs between model-generated (real) activations and random activations. In our study, we assess model sensitivity in order to compare real activations to synthetic activations composed of SAE latents. Our findings indicate that synthetic activations closely resemble real activations when we control for the sparsity and cosine similarity of the constituent SAE latents. This suggests that real activations cannot be explained by a simple "bag of SAE latents" lacking internal structure, and instead suggests that SAE latents possess significant geometric and statistical properties. Notably, we observe that our synthetic activations exhibit less pronounced activation plateaus compared to those typically surrounding real activations.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11372
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview