Keywords: Graphical models, Deep learning, Learning Representations
TL;DR: A neural network based graphical model with efficient learning, inference and sampling algorithms
Abstract: Graphs are ubiquitous and are often used to understand the dynamics of a system. Probabilistic Graphical Models comprising Bayesian and Markov networks, and Conditional Independence graphs are some of the popular graph representation techniques. They can model relationships between features (nodes) together with the underlying distribution. Although theoretically these models can represent very complex dependency functions, in practice often simplifying assumptions are made due to computational limitations associated with graph operations. This work introduces Neural Graphical Models (NGMs) which attempt to represent complex feature dependencies with reasonable computational costs. Specifically, given a graph of feature relationships and corresponding samples, we capture the dependency structure between the features along with their complex function representations by using neural networks as a multi-task learning framework. We provide efficient learning, inference and sampling algorithms for NGMs. Moreover, NGMs can fit generic graph structures including directed, undirected and mixed-edge graphs as well as support mixed input data types. We present empirical studies that show NGMs' capability to represent Gaussian graphical models, inference analysis of a lung cancer data and extract insights from a real world infant mortality data provided by CDC.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Probabilistic Methods (eg, variational inference, causal inference, Gaussian processes)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/neural-graphical-models/code)
5 Replies
Loading