Keywords: Brain-Computer Interface, Image Editing, Visual Generation, Generative Models, Diffusion Models
TL;DR: Loong-X enables hands-free image editing using multimodal neural signals, achieving performance comparable to text-driven methods by combining BCIs with the proposed diffusion-based generative methods.
Abstract: Traditional image editing typically relies on manual prompting, making it labor-intensive and inaccessible to individuals with limited motor control or language abilities. Leveraging recent advances in brain-computer interfaces (BCIs) and generative models, we propose LoongX, a hands-free image editing approach driven by multimodal neurophysiological signals.
LoongX utilizes state-of-the-art diffusion models trained on a comprehensive dataset of 23,928 image editing pairs, each paired with synchronized electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), photoplethysmography (PPG), and head motion signals that capture user intent.
To effectively address the heterogeneity of these signals, LoongX integrates two key modules. The cross-scale state space (CS3) module encodes informative modality-specific features. The dynamic gated fusion (DGF) module further aggregates these features into a unified latent space, which is then aligned with edit semantics via fine-tuning on a diffusion transformer (DiT).
Additionally, we pre-train the encoders using contrastive learning to align cognitive states with semantic intentions from embedded natural language.
Extensive experiments demonstrate that LoongX achieves performance comparable to text-driven methods (CLIP-I: 0.6605 vs. 0.6558; DINO: 0.4812 vs. 0.4637) and outperforms them when neural signals are combined with speech (CLIP-T: 0.2588 vs. 0.2549). These results highlight the promise of neural-driven generative models in enabling accessible, intuitive image editing and open new directions for cognitive-driven creative technologies. The code and dataset are released on the project website: https://loongx1.github.io.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 2820
Loading