MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neural rendering, 3D relighting, meta-learning
Abstract: Out-of-distribution (OOD) 3D relighting requires novel view synthesis under unseen lighting conditions that differ significantly from the observed images. Existing relighting methods, which assume consistent light source distributions between training and testing, often degrade in OOD scenarios. We introduce **MetaGS** to tackle this challenge from two perspectives. First, we propose a meta-learning approach to train 3D Gaussian splatting, which explicitly promotes learning generalizable Gaussian geometries and appearance attributes across diverse lighting conditions, even with biased training data. Second, we embed fundamental physical priors from the *Blinn-Phong* reflection model into Gaussian splatting, which enhances the decoupling of shading components and leads to more accurate 3D scene reconstruction. Results on both synthetic and real-world datasets demonstrate the effectiveness of MetaGS in challenging OOD relighting tasks, supporting efficient point-light relighting and generalizing well to unseen environment lighting maps.
Supplementary Material: zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 14848
Loading