Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generation

Published: 16 Jan 2024, Last Modified: 15 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Diffusion models, NeRF, 3D synthesis
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Text-to-3D generation has shown rapid progress in recent days with the advent of score distillation sampling (SDS), a methodology of using pretrained text-to-2D diffusion models to optimize a neural radiance field (NeRF) in a zero-shot setting. However, the lack of 3D awareness in the 2D diffusion model often destabilizes previous methods from generating a plausible 3D scene. To address this issue, we propose 3DFuse, a novel framework that incorporates 3D awareness into the pretrained 2D diffusion model, enhancing the robustness and 3D consistency of score distillation-based methods. Specifically, we introduce a consistency injection module which constructs a 3D point cloud from the text prompt and utilizes its projected depth map at given view as a condition for the diffusion model. The 2D diffusion model, through its generative capability, robustly infers dense structure from the sparse point cloud depth map and generates a geometrically consistent and coherent 3D scene. We also introduce a new technique called semantic coding that reduces semantic ambiguity of the text prompt for improved results. Our method can be easily adapted to various text-to-3D baselines, and we experimentally demonstrate how our method notably enhances the 3D consistency of generated scenes in comparison to previous baselines, achieving state-of-the-art performance in geometric robustness and fidelity.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 2347
Loading