The Persistent Laplacian for Data Science: Evaluating Higher-Order Persistent Spectral Representations of Data

Published: 24 Apr 2023, Last Modified: 15 Jun 2023ICML 2023 PosterEveryoneRevisions
Abstract: Persistent homology is arguably the most successful technique in Topological Data Analysis. It combines homology, a topological feature of a data set, with persistence, which tracks the evolution of homology over different scales. The persistent Laplacian is a recent theoretical development that combines persistence with the combinatorial Laplacian, the higher-order extension of the well-known graph Laplacian. Crucially, the Laplacian encode both the homology of a data set, and some additional geometric information not captured by the homology. Here, we provide the first investigation into the efficacy of the persistence Laplacian as an embedding of data for downstream classification and regression tasks. We extend the persistent Laplacian to cubical complexes so it can be used on images, then evaluate its performance as an embedding method on the MNIST and MoleculeNet datasets, demonstrating that it consistently outperforms persistent homology across tasks.
Submission Number: 5250
Loading