Chain-of-Discussion: A Multi-Model Framework for Complex Evidence-Based Question AnsweringDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Open-ended question answering requires models to find appropriate evidence to form well-reasoned, comprehensive and helpful answers. In practical applications, models also need to engage in extended discussions on potential scenarios closely relevant to the question. With augmentation of retrieval module, open-source Large Language Models~(LLMs) can produce coherent answers often with different focuses, but are still sub-optimal in terms of reliable evidence selection and in-depth question analysis. In this paper, we propose a novel Chain-of-Discussion framework to leverage the synergy among multiple open-source LLMs aiming to provide \textbf{more correct} and \textbf{more comprehensive} answers for open-ended QA, although they are not strong enough individually. Our experiments show that discussions among multiple LLMs play a vital role in enhancing the quality of answers. We will release our data and code for further research.
Paper Type: long
Research Area: NLP Applications
Contribution Types: NLP engineering experiment
Languages Studied: Chinese
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview