Enhancing Privacy in Multimodal Federated Learning with Information Theory

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Federated Learning, Multimodal Learning, Privacy Protection, Information Theory
Abstract: Multimodal federated learning (MMFL) has gained increasing popularity due to its ability to leverage the correlation between various modalities, meanwhile preserving data privacy for different clients. However, recent studies show that correlation between modalities increase the vulnerability of federated learning against Gradient Inversion Attack (GIA). The complicated situation of MMFL privacy preserving can be summarized as follows: 1) different modality transmits different amounts of information, thus requires various protection strength; 2) correlation between modalities should be taken into account. This paper introduces an information theory perspective to analyze the leaked privacy in process of MMFL, and tries to propose a more reasonable protection method \textbf{Sec-MMFL} based on assessing different information leakage possibilities of each modality by conditional mutual information and adjust the corresponding protection strength. Moreover, we use mutual information to reduce the cross-modality information leakage in MMFL. Experiments have proven that our method can bring more balanced and comprehensive protection at an acceptable cost.
Primary Area: Other (please use sparingly, only use the keyword field for more details)
Submission Number: 16629
Loading