DBGSL: Dynamic Brain Graph Structure LearningDownload PDF

Published: 04 Apr 2023, Last Modified: 17 Sept 2023MIDL 2023 PosterReaders: Everyone
Keywords: Dynamic graph, graph neural network, functional magnetic resonance imaging
TL;DR: Learning dynamic brain graphs from functional magnetic resonance imaging data
Abstract: Recently, graph neural networks (GNNs) have shown success at learning representations of brain graphs derived from functional magnetic resonance imaging (fMRI) data. The majority of existing GNN methods, however, assume brain graphs are static over time and the graph adjacency matrix is known prior to model training. These assumptions are at odds with neuroscientific evidence that brain graphs are time-varying with a connectivity structure that depends on the choice of functional connectivity measure. Noisy brain graphs that do not truly represent the underling fMRI data can have a detrimental impact on the performance of GNNs. As a solution, we propose Dynamic Brain Graph Structure Learning (DBGSL), a novel method for learning the optimal time-varying dependency structure of fMRI data induced by a downstream prediction task. Experiments demonstrate DBGSL achieves state-of-the-art performance for sex classification using real-world resting-state and task fMRI data. Moreover, analysis of the learnt dynamic graphs highlights prediction-related brain regions which align with existing neuroscience literature. Code available at https://github.com/ajrcampbell/dynamic-brain-graph-structure-learning.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:2209.13513/code)
4 Replies