Biologically Constrained Barrel Cortex Model Integrates Whisker Inputs and Replicates Key Brain Network Dynamics

Published: 22 Jan 2025, Last Modified: 25 Feb 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Barrel cortex, biophysical modeling, sensory-motor integration, recurrent spiking neural networks
TL;DR: Training a biologically constrained barrel cortex model and exploring its biological interpretability.
Abstract: The brain's ability to transform sensory inputs into motor functions is central to neuroscience and crucial for the development of embodied intelligence. Sensory-motor integration involves complex neural circuits, diverse neuronal types, and intricate intercellular connections. Bridging the gap between biological realism and behavioral functionality presents a formidable challenge. In this study, we focus on the columnar structure of the superficial layers of mouse barrel cortex as a model system. We constructed a model comprising 4,218 neurons across 13 neuronal subtypes, with neural distribution and connection strengths constrained by anatomical experimental findings. A key innovation of our work is the development of an effective construction and training pipeline tailored for this biologically constrained model. Additionally, we converted an existing simulated whisker sweep dataset into a spiking-based format, enabling our network to be trained and tested on neural signals that more closely mimic those observed in biological systems. The results of object discrimination utilizing whisker signals demonstrate that our barrel cortex model, grounded in biological constraints, achieves a classification accuracy exceeds classical convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs), by an average of 8.6%, and is on par with recent spiking neural networks (SNNs) in performance. Interestingly, a whisker deprivation experiment, designed in accordance with neuroscience practices, further validates the perceptual capabilities of our model in behavioral tasks. Critically, it offers significant biological interpretability: post-training analysis reveals that neurons within our model exhibit firing characteristics and distribution patterns similar to those observed in the actual neuronal systems of the barrel cortex. This study advances our understanding of neural processing in the barrel cortex and exemplifies how integrating detailed biological structures into neural network models can enhance both scientific inquiry and artificial intelligence applications. The code is available at https://github.com/fun0515/RSNN_bfd.
Supplementary Material: zip
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7299
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview