Keywords: TableQA, Triples
TL;DR: We propose Triples-Inspired Decomposition and Verification strtegy to improve LLM in TableQA.
Abstract: As the mainstream approach, LLMs have been widely applied and researched in TableQA tasks. Currently, the core of LLM-based TableQA methods typically include three phases: question decomposition, sub-question TableQA reasoning, and answer verification. However, several challenges remain in this process: i) Sub-questions generated by these methods often exhibit significant gaps with the original question due to critical information overlooked during the LLM's direct decomposition; ii) Verification of answers is typically challenging because LLMs tend to generate optimal responses during self-correct. To address these challenges, we propose a Triple-Inspired Decomposition and vErification (TIDE) strategy, which leverages the structural properties of triples to assist in decomposition and verification in TableQA. The inherent structure of triples (head entity, relation, tail entity) requires the LLM to extract as many entities and relations from the question as possible. Unlike direct decomposition methods that may overlook key information, our transformed sub-questions using triples encompass more critical details. Additionally, this explicit structure facilitates verification. By comparing the triples derived from the answers with those from the question decomposition, we can achieve easier and more straightforward validation than when relying on the LLM's self-correct tendencies. By employing triples alongside established LLM modes, Direct Prompting and Agent modes, TIDE achieves state-of-the-art performance across multiple TableQA datasets, demonstrating the effectiveness of our method.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10221
Loading