Keywords: Meta-Learning, Test-Time Adaptation, Value Function Estimation, Vision-Language Models
TL;DR: VL-TTA enables generalizable zero-shot value function estimation through test-time adaptation of contrastive VLMs
Abstract: Vision–Language Models (VLMs) show promise as zero-shot goal-conditioned value functions, but their frozen pre-trained representations limit generalization and temporal reasoning. We introduce VITA, a zero-shot value function learning method that enhances both capabilities via test-time adaptation. At inference, a lightweight adaptation module is updated via a gradient step on a meta-learned self-supervised loss, such that each test-time update improves value estimation. By updating sequentially over a trajectory, VITA encodes history into its parameters, addressing the temporal reasoning limitations. To mitigate shortcut learning, we propose a dissimilarity-based sampling strategy that selects semantically diverse segments of the trajectory during training. In real-world robotic manipulation tasks, VITA generalizes from a single training environment to diverse out-of-distribution tasks, environments, and embodiments, outperforming the state-of-the-art zero-shot method using autoregressive VLMs. Furthermore, we demonstrate that VITA’s zero-shot value estimates can be utilized for reward shaping in offline reinforcement learning, resulting in multi-task policies on the Meta-World benchmark that exceed the performance of those trained with the simulation’s fuzzy-logic dense rewards.
Supplementary Material: zip
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 20399
Loading