Generalizability of Adversarial Robustness Under Distribution ShiftsDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: domain generalization, adversarial robustness
Abstract: Recent progress in empirical and certified robustness promises to deliver reliable and deployable Deep Neural Networks (DNNs). Despite that success, most existing evaluations of DNN robustness have been done on images sampled from the same distribution that the model was trained on. Yet, in the real world, DNNs may be deployed in dynamic environments that exhibit significant distribution shifts. In this work, we take a first step towards thoroughly investigating the interplay between empirical and certified adversarial robustness on one hand and domain generalization on another. To do so, we train robust models on multiple domains and evaluate their accuracy and robustness on an unseen domain. We observe that: (1) both empirical and certified robustness generalize to unseen domains, and (2) the level of generalizability does not correlate well with input visual similarity, measured by the FID between source and target domains. We also extend our study to cover a real-world medical application, in which adversarial augmentation enhances both the robustness and generalization accuracy in unseen domains.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
TL;DR: We study the generalizability of empirical and certified robustness to unseen domains.
6 Replies

Loading