Typos that Broke the RAG’s Back: Genetic Attack on RAG Pipeline by Simulating Documents in the Wild via Low-level Perturbations

ACL ARR 2024 June Submission2523 Authors

15 Jun 2024 (modified: 03 Jul 2024)ACL ARR 2024 June SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: The robustness of recent Large Language Models (LLMs) has become increasingly crucial as their applicability expands across various domains and real-world applications. Retrieval-Augmented Generation (RAG) is a promising solution for addressing the limitations of LLMs, yet existing studies on the robustness of RAG often overlook the interconnected relationships between RAG components or the potential threats prevalent in real-world databases, such as minor textual errors. In this work, we investigate two underexplored aspects when assessing the robustness of RAG: 1) vulnerability to noisy documents through low-level perturbations and 2) a holistic evaluation of RAG robustness. Furthermore, we introduce a novel attack method, the Genetic Attack on RAG (GARAG), which targets these aspects. Specifically, GARAG is designed to reveal vulnerabilities within each component and test the overall system functionality against noisy documents. We validate RAG robustness by applying our GARAG to standard QA datasets, incorporating diverse retrievers and LLMs. The experimental results show that GARAG consistently achieves high attack success rates. Also, it significantly devastates the performance of each component and their synergy, highlighting the substantial risk that minor textual inaccuracies pose in disrupting RAG systems in the real world. The code will be disclosed after acceptance
Paper Type: Long
Research Area: Question Answering
Research Area Keywords: RAG, Robustness, Typo
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 2523
Loading