Stochastic Gradient Langevin Dynamics Based on Quantization with Increasing Resolution

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Stochastic differential equations, Quantization, Langevin SDE, White noise hypothesis, Weak convergence
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Stochastic learning dynamics based on Langevin or Levy stochastic differential equations (SDEs) in deep neural networks control the variance of noise by varying the size of the mini-batch or directly those of injecting noise. Since the noise variance affects the approximation performance, the design of the additive noise is significant in SDE-based learning and practical implementation. In this paper, we propose an alternative stochastic descent learning equation based on quantized optimization for non-convex objective functions, adopting a stochastic analysis perspective. The proposed method employs a quantized optimization approach that utilizes Langevin SDE dynamics, allowing for controllable noise with an identical distribution without the need for additive noise or adjusting the mini-batch size. Numerical experiments demonstrate the effectiveness of the proposed algorithm on vanilla convolution neural network (CNN) models and the ResNet-50 architecture across various data sets. Furthermore, we provide a simple PyTorch implementation of the proposed algorithm.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4810
Loading