Keywords: Hyperparameter Optimization; Reinforcement Learning; Population-Based Training
Abstract: Reinforcement Learning's high sensitivity to hyperparameters is a source of instability and inefficiency, creating significant challenges for practitioners. Hyperparameter Optimization (HPO) algorithms have been developed to address this issue, among them Population-Based Training (PBT) stands out for its ability to generate hyperparameters schedules instead of fixed configurations. PBT trains a population of agents, each with its own hyperparameters, frequently ranking them and replacing the worst performers with mutations of the best agents. These intermediate selection steps can cause PBT to focus on short-term improvements, leading it to get stuck in local optima and eventually fall behind vanilla Random Search over longer timescales. This paper studies how this greediness issue is connected to the choice of *evolution frequency*, the rate at which the selection is done. We propose Multiple-Frequencies Population-Based Training (MF-PBT), a novel HPO algorithm that addresses greediness by employing sub-populations, each evolving at distinct frequencies. MF-PBT introduces a migration process to transfer information between sub-populations, with an asymmetric design to balance short and long-term optimization. Extensive experiments on the Brax suite demonstrate that MF-PBT improves sample efficiency and long-term performance, even without tuning hyperparameters. Code will be released.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6846
Loading