DLaVA: Document Language and Vision Assistant for Answer Localization with Enhanced Interpretability and Trustworthiness
Keywords: Multimodal Large Language Models, Zero-Shot Answer Localization, OCR-Free Document Understanding, Document Visual Question Answering
Abstract: Document Visual Question Answering (VQA) demands robust integration of text detection, recognition, and spatial reasoning to interpret complex document layouts. In this work, we introduce DLaVA, a novel, training-free pipeline that leverages Multimodal Large Language Models (MLLMs) for zero-shot answer localization in order to improve trustworthiness, interpretability, and explainability. By leveraging an innovative OCR-free approach that organizes text regions with unique bounding box IDs, the proposed method preserves spatial contexts without relying on iterative OCR or chain-of-thought reasoning, thus substantially reducing the computational complexity. We further enhance the evaluation protocol by integrating Intersection over Union (IoU) metrics alongside Average Normalized Levenshtein Similarity (ANLS), thereby ensuring that not only textual accuracy is considered, but spatial accuracy is taken into account, ultimately reducing the risks of AI hallucinations and improving trustworthiness.
Experiments on benchmark datasets demonstrate competitive performance compared to state-of-the-art techniques, with significantly lower computational complexity and enhanced accuracies and reliability for high-stakes applications. The code and datasets utilized in this study for DLaVA are accessible at: https://github.com/ahmad-shirazi/AnnotMLLM.
Submission Number: 134
Loading