Keywords: MNL Bandits, Assortment Optimization, SupCB
Abstract: In this work, we consider the data-driven assortment optimization problem under the linear multinomial logit(MNL) choice model.
We first establish a improved confidence region for the maximum likelihood estimator (MLE) of the $d$-dimensional linear MNL likelihood function that removes the explicit dependency on a problem-dependent parameter $\kappa^{-1}$ in previous result (Oh and Iyengar, 2021), which scales exponentially with the radius of the parameter set.
Building on the confidence region result, we investigate the data-driven assortment optimization problem in both offline and online settings. In the offline setting, the previously best-known result scales as $\tilde{O}\left(\sqrt{\frac{d}{\kappa n_{S^\star}}}\right)$, where $n_{S^\star}$ the number of times that optimal assortment $S^\star$ is observed (Dong et al., 2023). We propose a new pessimistic-based algorithm that, under a burn-in condition, removes the dependency on $d,\kappa^{-1}$ in the leading order bound and works under a more relaxed coverage condition, without requiring the exact observation of $S^\star$. In the online setting, we propose the first algorithm to achieve $\tilde{O}(\sqrt{dT})$ regret without a multiplicative dependency on $\kappa^{-1}$. In both settings, our results nearly achieve the corresponding lower bound when reduced to the canonical $N$-item MNL problem, demonstrating their optimality.
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 22285
Loading