Efficient Edge Test-Time Adaptation via Latent Feature Coordinate Correction

ICLR 2026 Conference Submission416 Authors

01 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Test-time Adaptation, Edge Devices, Forward-Only, Latent Feature
TL;DR: An efficient single-instance TTA method for edge devices, leveraging forward-only optimization in the latent principal subspace.
Abstract: Edge devices face significant challenges due to limited computational resources and distribution shifts, making efficient and adaptable machine learning essential. Existing test-time adaptation (TTA) methods often rely on gradient-based optimization or batch processing, which are inherently unsuitable for resource-constrained edge scenarios due to their reliance on backpropagation and high computational demands. Gradient-free alternatives address these issues but often suffer from limited learning capacity, lack flexibility, or impose architectural constraints. To overcome these limitations, we propose a novel single-instance TTA method tailored for edge devices (TED), which employs forward-only coordinate optimization in the principal subspace of latent using the covariance matrix adaptation evolution strategy (CMA-ES). By updating a compact low-dimensional vector, TED not only enhances output confidence but also aligns the latent representation closer to the source latent distribution within the latent principal subspace. This is achieved without backpropagation, keeping the model parameters frozen, and enabling efficient, forgetting-free adaptation with minimal memory and computational overhead. Experiments on image classification and keyword spotting tasks across the ImageNet and Google Speech Commands series datasets demonstrate that TED achieves state-of-the-art performance while $\textit{reducing computational complexity by up to 63 times}$, offering a practical and scalable solution for real-world edge applications. Furthermore, we successfully $\textit{deployed TED on the ZYNQ-7020 platform}$, demonstrating its feasibility and effectiveness for resource-constrained edge devices in real-world deployments.
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 416
Loading