$\mathrm{BP}(\lambda)$: bias-free online learning via synthetic gradients

21 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: recurrent neural networks; supervised learning; temporal credit assignment; synthetic gradients; reinforcement learning; biological learning
TL;DR: A novel algorithm for learning synthetic error gradients, inspired by temporal difference algorithms in reinforcement learning
Abstract: Training recurrent neural networks typically relies on backpropagation through time (BPTT). BPTT depends on forward and backward passes to be completed, rendering the network locked to these computations before loss gradients are available. Recently, Jaderberg et al. proposed synthetic gradients to alleviate the need for full BPTT. In their implementation synthetic gradients are learned through a mixture of backpropagated gradients and bootstrapped synthetic gradients, analogous to the temporal difference (TD) algorithm in Reinforcement Learning (RL). However, as in TD learning, heavy use of bootstrapping can result in bias which leads to poor synthetic gradient estimates. Inspired by the accumulate $\mathrm{TD}(\lambda)$ in RL, we propose a fully online method for learning synthetic gradients which avoids the use of BPTT altogether: *accumulate* $BP(\lambda)$. As in accumulate $\mathrm{TD}(\lambda)$, we show analytically that accumulate $\mathrm{BP}(\lambda)$ can control the level of bias by using a mixture of temporal difference errors and recursively defined eligibility traces. We next demonstrate empirically that our model outperforms the original implementation for learning synthetic gradients in a variety of tasks, and is particularly suited for capturing longer timescales. Finally, building on recent work we reflect on accumulate $\mathrm{BP}(\lambda)$ as a principle for learning in biological circuits. In summary, inspired by RL principles we introduce an algorithm capable of bias-free online learning via synthetic gradients.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3668
Loading