An Optics Controlling Environment and Reinforcement Learning BenchmarksDownload PDF

Anonymous

Sep 29, 2021 (edited Oct 05, 2021)ICLR 2022 Conference Blind SubmissionReaders: Everyone
  • Keywords: Reinforcement learning, Optical simulation, Machine Learning for Optics
  • Abstract: Deep reinforcement learning has the potential to address various scientific problems. In this paper, we implement an optics simulation environment for reinforcement learning based controllers. The environment incorporates nonconvex and nonlinear optical phenomena as well as more realistic time-dependent noise. Then we provide the benchmark results of several state-of-the-art reinforcement learning algorithms on the proposed simulation environment. In the end, we discuss the difficulty of controlling the real-world optical environment with reinforcement learning algorithms. We will make the code of the paper publicly available.
  • One-sentence Summary: We implement an optics simulation environment and provide the benchmark results of several state-of-the-art reinforcement learning algorithms.
  • Supplementary Material: zip
0 Replies

Loading