Emergence of shared sensory-motor graphical language from visual inputDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Emergent Communication, Visual Communication, Sensory-motor communication, Contrastive Learning, Language Game
TL;DR: We use contrastive multimodal learning to train artificial agents to communicate via a sensory-motor system producing drawings. We then show that the emerging graphical language has compositional properties
Abstract: The framework of Language Games studies the emergence of languages in populations of agents. Recent contributions relying on deep learning methods focused on agents communicating via an idealized communication channel, where utterances produced by a speaker are directly perceived by a listener. This comes in contrast with human communication, which instead relies on a sensory-motor channel, where motor commands produced by the speaker (e.g. vocal or gestural articulators) result in sensory effects perceived by the listener (e.g. audio or visual). Here, we investigate if agents can evolve a shared language when they are equipped with a continuous sensory-motor system to produce and perceive signs, e.g. drawings. To this end, we introduce the Graphical Referential Game (GREG) where a speaker must produce a graphical utterance to name a visual referent object consisting of combinations of MNIST digits while a listener has to select the corresponding object among distractor referents, given the produced message. The utterances are drawing images produced using dynamical motor primitives combined with a sketching library. To tackle GREG we present CURVES: a multimodal contrastive deep learning mechanism that represents the energy (alignment) between named referents and utterances generated through gradient ascent on the learned energy landscape. We, then, present a set of experiments and metrics based on a systematic compositional dataset to evaluate the resulting language. We show that our method allows the emergence of a shared, graphical language with compositional properties
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Neuroscience and Cognitive Science (e.g., neural coding, brain-computer interfaces)
Supplementary Material: zip
17 Replies

Loading