Keywords: transformer, formal reasoning, complexity
Abstract: We analyse the complexity of the satisfiability problem, or similarly feasibility problem, (trSAT) for transformer encoders (TE), which naturally occurs in formal verification or interpretation, collectively referred to as formal reasoning. We find that trSAT is undecidable when considering TE as they are commonly studied in the expressiveness community. Furthermore, we identify practical scenarios where trSAT is decidable and establish corresponding complexity bounds. Beyond trivial cases, we find that quantized TE, those restricted by fixed-width arithmetic, lead to the decidability of trSAT due to their limited attention capabilities. However, the problem remains difficult, as we establish scenarios where trSAT is NEXPTIME-hard and others where it is solvable in NEXPTIME for quantized TE. To complement our complexity results, we place our findings and their implications in the broader context of formal reasoning.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6501
Loading