Block and Subword-Scaling Floating-Point (BSFP) : An Efficient Non-Uniform Quantization For Low Precision InferenceDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Abstract: In this paper, we propose Block and Subword-Scaling Floating-Point (BSFP), a non-uniform quantization scheme for the skewed and non-uniform distribution of weight vectors in neural networks. By quantizing each weight vector as the superposition of multiple subword vectors (in two's complement) with scaling factors (in Low-bit Floating-Point, LBFP), BSFP can effectively fit the distribution of weight vectors while maintaining high computation efficiency. Furthermore, we present a grid search-based MSE-optimal quantization flow and a scaled serial processing engine to complete the quantization pipeline and the infrastructure. The experimental results on the ImageNet classification task show that our proposed method outperforms state-of-the-art Microsoft Floating Point (MSFP) by up to 20.56% top-1 accuracy at the same weight precision and reduces up to 10.3% model size. Furthermore, BSFP outperforms MSFP by up to 2.0$\times$ computing throughput and up to 5.3$\times$ energy efficiency under the same silicon area budget.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
14 Replies

Loading