Keywords: graph neural networks, graph representation learning
TL;DR: Equivariant Transformer architecture for spatio-temporal graph data.
Abstract: We introduce an $E(n)$-equivariant Transformer architecture for spatio-temporal graph data. By imposing rotation, translation, and permutation equivariance inductive biases in both space and time, we show that the Spacetime $E(n)$-Transformer (SET) outperforms purely spatial and temporal models without symmetry-preserving properties. We benchmark SET against said models on the $N$-body problem, a simple physical system with complex dynamics. While existing spatio-temporal graph neural networks focus on sequential modeling, we empirically demonstrate that leveraging underlying domain symmetries yields considerable improvements for modeling dynamical systems on graphs.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1075
Loading