AdaReasoner: Adaptive Reasoning Enables More Flexible Thinking

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY-SA 4.0
Keywords: Adaptive reasoning, LLM reasoning, Reinforcement learning, large language models
TL;DR: We propose AdaReasoner, a reinforcement learning–based framework that adaptively tunes LLM reasoning settings in few-shot scenarios, achieving gains in multiple experimental settings.
Abstract: LLMs often need effective configurations, like temperature and reasoning steps, to handle tasks requiring sophisticated reasoning and problem-solving, ranging from joke generation to mathematical reasoning. Existing prompting approaches usually adopt general-purpose, fixed configurations that work “well enough” across tasks but seldom achieve task-specific optimality. To address this gap, we introduce AdaReasoner, an LLM-agnostic plugin designed for any LLM to automate adaptive reasoning configurations for tasks requiring different types of thinking. AdaReasoner is trained using a reinforcement learning (RL) framework, combining a factorized action space with a targeted exploration strategy, along with a pretrained reward model to optimize the policy model for reasoning configurations with only a few-shot guide. AdaReasoner is backed by theoretical guarantees and experiments of fast convergence and a sublinear policy gap. Across six different LLMs and a variety of reasoning tasks, it consistently outperforms standard baselines, preserves out-of-distribution robustness, and yield gains on knowledge-intensive tasks through tailored prompts.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 10923
Loading