Diff-BBO: Diffusion-Based Inverse Modeling for Black-Box Optimization

ICLR 2025 Conference Submission9359 Authors

27 Sept 2024 (modified: 20 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion models, Black-box Optimization, Uncertainty Quantification
TL;DR: We propose an inverse modeling approach for efficient black-box optimization using conditional diffusion model.
Abstract: Black-box optimization (BBO) aims to optimize an objective function by iteratively querying a black-box oracle in a sample-efficient way. While prior studies focus on forward approaches to learn surrogates for the unknown objective function, they struggle with steering clear of out-of-distribution and invalid inputs. Recently, inverse modeling approaches that map objective space to the design space with conditional diffusion models have demonstrated impressive capability in learning the data manifold. They have shown promising performance in offline BBO tasks. However, these approaches require a pre-collected dataset. How to design the acquisition function for inverse modeling to actively query new data remains an open question. In this work, we propose diffusion-based inverse modeling for black-box optimization (Diff-BBO), an inverse approach leveraging diffusion models for online BBO problem. Instead of proposing candidates in the design space, Diff-BBO employs a novel acquisition function Uncertainty-aware Exploration (UaE) to propose objective function values. Subsequently, we employ a conditional diffusion model to generate samples based on these proposed values within the design space. We demonstrate that using UaE results in optimal optimization outcomes, supported by both theoretical and empirical evidence.
Supplementary Material: zip
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9359
Loading