Abstract: In the era emphasizing the privacy of personal data, verifiable federated learning has garnered significant attention as a machine learning approach to safeguard user privacy while simultaneously validating aggregated result. However, there are some unresolved issues when deploying verifiable federated learning in edge computing. Due to the constraint resources, edge computing demands cost saving measurements in model training such as model pruning. Unfortunately, there is currently no protocol capable of enabling users to verify pruning results. Therefore, in this paper, we introduce PrVFL, a verifiable federated learning framework that supports model pruning verification and heterogeneous edge computing. In this scheme, we innovatively utilize zero-knowledge range proof protocol to achieve pruning result verification. Additionally, we first propose a heterogeneous delayed verification scheme supporting the validation of aggregated result for pruned heterogeneous edge models. Addressing the prevalent scenario of performance-heterogeneous edge clients, our scheme empowers each edge user to autonomously choose the desired pruning ratio for each training round based on their specific performance. By employing a global residual model, we ensure that every parameter has an opportunity for training. The extensive experimental results demonstrate the practical performance of our proposed scheme.
Loading