Stochastic Constrained DRO with a Complexity Independent of Sample Size

Published: 05 Jul 2023, Last Modified: 05 Jul 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: Distributionally Robust Optimization (DRO), as a popular method to train robust models against distribution shift between training and test sets, has received tremendous attention in recent years. In this paper, we propose and analyze stochastic algorithms that apply to both non-convex and convex losses for solving Kullback–Leibler divergence constrained DRO problem. Compared with existing methods solving this problem, our stochastic algorithms not only enjoy competitive if not better complexity independent of sample size but also just require a constant batch size at every iteration, which is more practical for broad applications. We establish a nearly optimal complexity bound for finding an $\epsilon$-stationary solution for non-convex losses and an optimal complexity for finding an $\epsilon$-optimal solution for convex losses. Empirical studies demonstrate the effectiveness of the proposed algorithms for solving non-convex and convex constrained DRO problems.
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Length: Regular submission (no more than 12 pages of main content)
Changes Since Last Submission: Thanks for handling our paper. We modified our paper according to the reviewers and AC recommendations.
Supplementary Material: zip
Assigned Action Editor: ~Qibin_Zhao1
Submission Number: 875