Keywords: Vision Language Navigation, Object Search
TL;DR: An open-vocabulary multi-object search framework that integrates VLMs, frontier-based exploration, and POMDP-based planning to achieve efficient and robust multi-object search.
Abstract: Object search is a fundamental task for robots deployed in indoor building environments, yet challenges arise due to observation instability, especially for open-vocabulary models. While foundation models (LLMs/VLMs) enable reasoning about object locations even without direct visibility, the ability to recover from failures and replan remains crucial. The Multi-Object Search (MOS) problem further increases complexity, requiring the tracking multiple objects and thorough exploration in novel environments, making observation uncertainty a significant obstacle. To address these challenges, we propose a framework integrating VLM-based reasoning, frontier-based exploration, and a Partially Observable Markov Decision Process (POMDP) framework to solve the MOS problem in novel environments. VLM enhances search efficiency by inferring object-environment relationships, frontier-based exploration guides navigation in unknown spaces, and POMDP models observation uncertainty, allowing recovery from failures in occlusion and cluttered environments.
Submission Number: 23
Loading