Keywords: Graph Neural Networks, Deep Models
TL;DR: We propose Posteriori-Sampling-based Node-Adaptative Residual Module to enhance the performances of deep graph neural networks.
Abstract: Graph Neural Networks (GNNs), a type of neural network that can learn from graph-structured data through neighborhood information aggregation, have shown superior performance in various downstream tasks. However, as the number of layers increases, node representations becomes indistinguishable, which is known as over-smoothing. To address this issue, many residual methods have emerged. In this paper, we focus on the over-smoothing issue and related residual methods. Firstly, we revisit over-smoothing from the perspective of overlapping neighborhood subgraphs, and based on this, we explain how residual methods can alleviate over-smoothing by integrating multiple orders neighborhood subgraphs to avoid the indistinguishability of the single high-order neighborhood subgraphs. Additionally, we reveal the drawbacks of previous residual methods, such as the lack of node adaptability and severe loss of high-order neighborhood subgraph information, and propose a \textbf{Posterior-Sampling-based, Node-Adaptive Residual module (PSNR)}. We theoretically demonstrate that PSNR can alleviate the drawbacks of previous residual methods. Furthermore, extensive experiments verify the superiority of the PSNR module in fully observed node classification and missing feature scenarios. Our code
is available at \href{https://github.com/jingbo02/PSNR-GNN}{https://github.com/jingbo02/PSNR-GNN}.
Primary Area: Graph neural networks
Submission Number: 7100
Loading