Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation

ACL ARR 2024 June Submission1413 Authors

14 Jun 2024 (modified: 08 Aug 2024)ACL ARR 2024 June SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution. Code and data released at https://anonymized.
Paper Type: Long
Research Area: Question Answering
Research Area Keywords: Answer Attribution, Retrieval-Augmented Generation, Model Internals, Interpretability
Contribution Types: Model analysis & interpretability, NLP engineering experiment
Languages Studied: English, Bengali, Finnish, Japanese, Russian, Telugu
Submission Number: 1413
Loading